
Waiting for the cells to grow: a laboratory blog at http://golgi.ana.ed.ac.uk/Davieslab/wftctg.html
----------------------------------------------------------------------------------------------------------------------------------------------------------------

Davies J.A. (2017) Scientific programming. Davieslab Blog. http://golgi.ana.ed.ac.uk/Davieslab/blog/2017-05-ProfCode.pdf

'Prof code'

I am always slightly baffled when I hear people referring to young people as ‘digital natives’ and 

greying people of my own generation as ‘digital immigrants’, because we were born into a digital 

world too. By the time I took my first breath in 1965, the first British business computer company 

(which was the world’s first) was already 14 years old and computers mediated many aspects of 

public life, from tax systems to weather forecasting to airliner booking timetabling to the pay and 

ordering systems of Lyons corner teashops. Operation over phone lines was common place and, by 

1969, the first parts of the Internet were in operation. In the 1970s, many schools had computers on 

which interested students could learn, most being ancient cast-offs from industry. I well remember 

ours: a Litton, which used paper tape for storage and a magnetic drum memory in lieu of RAM. 

That drum had, if memory serves, 256 bytes of storage (a byte being 12 bits, in the case of this 

machine). Programming it efficiently meant thinking hard about the timing of the drum’s rotation, 

to avoid the need for the system to wait for the drum to come back round. It could not do much but I

really loved programming it and spent many a lunch-break in the room containing it, with some 

other lads who were equally enthusiastic.

By the mid 1970s, many of us were using new-fangled microprocessors to construct and program 

our own computers, either from scratch or by starting with a single board computer such as the 

Acorn Atom, the Apple 1 or the Sym1 (below). 

A typical DIY computer of the 
1970s, in this case built on a 
SYM1 6502 development 
board. I still have this machine 
and, despite the rats’ nest of 
cables between it, the KTM1 
terminal (ie keyboard) and 
monitor driver, held together 
with my early teenage soldering
‘skills’, it still works.

These did not come with any software beyond, at best, operating systems allowing one to key 

software in: if we wanted the computers to do anything we had to program them ourselves. These 

early DIY machines had no facilities for high-level languages, and one programmed in machine 



Waiting for the cells to grow: a laboratory blog at http://golgi.ana.ed.ac.uk/Davieslab/wftctg.html
----------------------------------------------------------------------------------------------------------------------------------------------------------------

code. A program to print “Hi” on the screen might look like this;

A9 48 8D FE FF A9 69 8D FF FF 60

The numbers are in hexadecimal (base 16); they mean ‘load into the processor’s accumulator the 

value 48 (hex ACSII code for the letter ‘H’) and store it in graphics memory location 65534 {FFFE 

in hexadecimal) then load into the processor’s accumulator the value 69 (hex ASCII code for ‘i’) 

and store it in graphics memory location 65535, then return from this subroutine. I wrote the code 

above and the ASCII from memory, by the way, although I last programmed 6502 machine code in 

raw hexadecimal about 30 years ago: what you learn as a young teenager you tend not to forget. The

Lytton was similar, though it was programmed in octal (base 8) numbers that were represented as 

holes on paper tape. 

As time went on and memory became cheaper (so we could save our pocket money and aspire to, 

say, 4 kilobytes!), we improved our systems, adding higher level languages like Forth or BASIC 

and sharing our code. Some of us also constructed modems for operation over the phone lines, 

allowing us to connect to distant servers and also to connect to the Internet (I had better not specify 

how free internet connection was achieved, for reasons that will be obvious to any readers who 

were doing the same. Back then it was not exactly illegal, but in a sort of grey area and people 

turned a blind eye as we did no damage - ‘hacking’ did not in those days mean being a vandal but 

just meant improvising and repurposing technology in a clever way). Simple services like Telnet 

allowed us to read, for example, the news pages at NASA, and Gopher allowed internet searching 

(this was all long before the World Wide Web). By the mid 80s, social media were available and 

much-used through the medium of bulletin boards: I still have my e-mail address at the WELL, the 

hippyish Whole Earth ‘Lectronic Link begun in 1985. There, one could learn quite a lot about the 

world through the ‘alt.’ boards (again, older readers will know what I mean, and will remember just 

how mind-broadening was the writing by the very free, liberal-intellectual contributors to these 

boards and will also remember the respectful, ‘troll’-free discussions).

One thing that divides those of us who grew up interacting with the digital world of the 20 th century 

from those who grew up in the21st is that we could all write code (we had to – we had no choice: 

most of us were pretty handy with a soldering iron for the same reason) whereas a shockingly high 

proportion of even science graduates nowadays cannot. The students who can code mostly learn 



Waiting for the cells to grow: a laboratory blog at http://golgi.ana.ed.ac.uk/Davieslab/wftctg.html
----------------------------------------------------------------------------------------------------------------------------------------------------------------

formally, rather than from club newsletters in teenage bedrooms, and they learn the latest techniques

as their starting point. Thinking in an abstract way about objects and functions is second nature to 

them (or, rather, it is first nature) and they have no reason at all to have any mental pictures of the 

latches and shift registers deep in the heart of the central processor, nor (for most purposes) of 

orders and timing of events. And this makes for a second division between the young and older 

generations, at least the older amateurs in computing who, like me, have not really kept up. I still 

think of code procedurally, as a sequence of instructions to be followed in a specific order, and I 

have a mild aversion to using ‘objects’, finding it more natural to handle every operation explicitly. 

The code I write for simulating biological systems to aid my lab work does work, but properly 

trained scientific coders tend to look at it with wide-eyed amazement. Comparisons to flint axes and

cave paintings are not unknown.

Recently, I was invited to give an evening talk about the lab’s synthetic biology work at Imperial 

College and, in the wine-and-nibbles session afterwards, I was talking about writing programs with 

Dick Kintney, a world-leading biological engineer who is native to that parish. I mentioned the way 

my code amuses young programmers, and he recognized the phenomenon at once, being of a 

similar generation and also being someone who uses programming as a tool rather than an end in 

itself. Laughing, he told me that his own graduates have a special name for it, a name I will now 

borrow. 

From now on, when someone asks what language I use for writing simulations, I will be honest: I 

will tell them I write in ‘Prof code’.

Jamie Davies

Edinburgh

May 2017

Links:

LEO, the first business computer: 

https://www2.warwick.ac.uk/services/library/mrc/explorefurther/digital/leo/story/

Dick Kintney’s web page:

http://www.imperial.ac.uk/people/r.kitney

https://www2.warwick.ac.uk/services/library/mrc/explorefurther/digital/leo/story/
http://www.imperial.ac.uk/people/r.kitney


Waiting for the cells to grow: a laboratory blog at http://golgi.ana.ed.ac.uk/Davieslab/wftctg.html
----------------------------------------------------------------------------------------------------------------------------------------------------------------

Index page: PhD supervisor, coding, programming, bad programming, procedural programming, richard kintney, sym1, sym-1, 6502 microprocessor, computer, computer modelling, biology 

modelling, systems biology, synthetic biology, jamie davies, professor davies, edinburgh medical school, edinburgh university.


