
Class notes from DB4 Cellular Mechanisms
 

Session 3 - 9th October 2015.

We began with you reporting back on your tasks: analysing the three gene networks below.

I also illustrated their action (for two of them, anyway) by using directly comparable electronic 
analogues, based on 1 transistor modelling 1 gene. 

This was a feed-forward network:

This may well have been the hardest one of the 
three. In the digital domain, it functions as a 
sign-sensitive time delay. Starting with 
everything 'off', when the input switches to 'on', 
the output also switches to on after one 
transcription delay. Starting with everything 'on',
when the input switches to 'off' the output 
switches to 'off' only after TWO protein decay 
delays (because the intermediate gene will be on
until the protein of the first has decayed, and the 
output gene will be on until the protein from the 
intermediate gene has then decayed).  This can 
be very useful for robustness.

In the analogue domain, it causes hysteresis.

Note that the network analyzed has all-positive connections, and is 'coherent': a mix of positive and 
negative gives an 'incoherent' feedforward loop, which behaves differently of course. One version is
effectively like (3) below. References for this system: PMID: 14607112 ,  PMID: 23335016 (quite 
theoretical) 

This one was a band-sensitive activator, active for moderate levels of signal but not very high or 
very low.



Reference for this system: PMID: 15858574

The embryological relevance of this type of thing is in responding to morphogen gradients, for 
example turning one gradient into 3 response zones (cf Wolpert's French Flag model). Again, in real
life there are additional complications to sharpen gradients.

C was the repressilator (ring oscillator)

The geometry of this network is pretty straightforward; A represses B, B represses C and C 
represses A (but each would be on if not repressed). It oscillates. Let's start with A just switching on.
After some transcriptional and translational delay, A will hold B off. Once the protein made by B 
has decayed away, C can switch on. After some transcriptional and translational delay, C will then 
switch A off.  Once the protein made by A has decayed away, B can switch on. After some 
transcriptional and translational delay, B will then switch C off.  Once the protein made by C has 
decayed away, A can switch on... and we are back where we started. A wave of activation goes 
backwards (C-B-A-C-B-A...) round the ring.

Reference for this system: PMID: 10659856

You highlighted the somite clock as an example of (more complex) oscillator circuits being used in 
development. Some of the additional complication in that system is to phase-lock cells together 
(synchronize them); some is probably for robustness.

By the way – and of course this is not a remotely examinable part of the course (I have added it 
in case any of you has any interest in electronics) – this is how the junk-box circuits I knocked 
together work:



At this point, our journey to explain the existence of, and transitions between, differentiated cell 
states has gone from studying control of single genes, through study of very simple positive and 
negative feedback loops (homeostats and latches), to questioning the existence of 'master 
regulators', to looking at small gene networks that perform developmentally-relevant tasks (like 
those above). The final destination is consideration of genome-scale networks.

The first class exercise (for which you showed, as a group, a surprising lack of numeracy for BSc 
Honours students!) just considered what a tiny amount of state space is taken up by differentiated 
cell states. Perhaps I had better clarify a couple of terms in that sentence: we took a differentiated 
cell state to be an combination of gene expression states (each gene idealized to being 'off' or being 
'on') that is self-sustaining (stable). 'State space'  can be considered an N-dimensional space (a graph
with N axes) in which the state of the whole network, in terms of all its 1s and 0s, can be specified 
by a unique point. For example, for 2 genes, a 2-dimensional graph can represent the states 0,0 (the 
point is at the origin), 0,1 (the point is at level 1 up the y axis but still on the x axis), 1,0 (the point is
on the y axis but at level 1 along the x axis) and 1,1 (the point is off both axes, at location 1,1). For 
3 genes, a 3-dimensional graph can be used the same way, with 8 distinct possible points. For the 
25,000 genes of a human genome (we are rounding numbers all the way through here, for 
simplicity), we would need a 25,000-axis graph. Of course you cannot literally imagine such a 
thing, but we did work out that it accommodates 225,000 = 107526 different states.  

There are roughly 200 differentiated cell states in an adult human (with some room for argument). 
These occupy an almost unimaginably small part of the 107526-state statespace. How is stability of 
just a tiny number of states achieved in such a massive range of possible states?

To address this, we examined Stuart Kaufman's N,K Boolean Network models.



In these, N is the number of 'nodes' (genes in our
example: the model can be generalized to other 
things) and K is the average number of inputs 
that control a node (eg the number of different 
transcription-factor binding sites in a gene's 
promoter). The response of each gene (on/off) is 
determined by a Boolean function of its inputs.

The model begins with the network in any of its 
possible states. A clock then ticks, and the new 
state of each gene is calculated according to the 
states of the inputs to that gene before the clock 
ticked. Then it ticks again, and so on.

We (you!) explored the functioning of this model with a toy network consisting of just 3 nodes. This
is drawn in 'biology-style' above (a mess) and more neatly below.

There are 8 (23) possible starting states. 

You worked through the network from each one,
and established that, although there are 8 
possible states, only 2 (000 &111) are truly 
stable and one other oscillates from 010 to 001. 

The other 4 possible states all progress to 111. 
This is called an 'attractor', and the states that 
lead to it constitute its 'basin of attraction' (see 
next figures for 2 different styles of drawing 
this) 

So... from our little toy network, we can see that states are not equal. Some are attractors in their 
own right while others lead to them. This gives an inkling about how small numbers of 
differentiated states can exist among very many possible initial states.



Kaufman modelled much larger RANDOM N.K Boolean networks by computer, varying K 
between batches of simulations. He found that when K was large (>5), there were very many 
attractors – 2n/2  - and also that most small changes to the network (eg break one connection) cause 
most attractors to change. On the other hand, when K was small (2-3), the behaviour was very 
different: there were now only about 2√n attractors, working out as 160 for 25,000 genes. What's 
more, 4/5 of the attractors are robust to (unchanged by) a random break in the network. 

None of these models were of actual genomes, of course (they were random), but tis very fact 
makes the take-home message stronger: the existence of a very few differentiated states in a large 
network of genes is (if the idealization of genomes as N,K Boolean networks is reasonable) 
'automatic' – it emerges from the maths of the networks. Natural selection has no doubt done a great
deal to shape what our differentiated states actually are, but the existence of a few stable states in a 
vast ocean of possibility did not need to evolve – it is am emergent property of such networks. 

The take home message from the above is not that we have somehow found a nice neat 'theory of 
differentiation' and can now go home (we haven't: life is a mess and every case has to be studied the
hard way - attempts to predict developmental mechanisms from purely theoretical grounds have 
almost all failed spectacularly). Rather, it tells us that even random networks of genes show 
remarkably life-like behaviour; the existence of stable differentiated states may emerge naturally, 
hierarchical control may not be the norm, and redundancy may be inevitable.

Studies of real genomic networks, such as those in yeast, suggest that the number of connections 
between genes is not a constant 2 or 3, but instead follows a power law. This is (broadly) 
characteristic of other networks such as the Internet and Air Travel routes.

References for N,K networks

• Attractors in random N,K Boolean networks; Wuensche (1994) - PMID: 9697174
• N,K Boolean networks: Kauffman (1995) At home in the universe, Penguin books, chapter 

5. This book is a more 'bed-time reading' version of Kauffman (1993) Origins of Order, 
Oxford (a truly excellent book, but harder going). The summary of the science in this 
chapter is excellent, but be aware that elsewhere in the 1995 book he is pursuing a 
philosophical/theological agenda alongside the science, which some readers may find 
distracting.

•  Power law networks: Small World (2002), Mark Buchanan (Publ Wiedenfield & 
Nicholson): again, a pop-science book suitable for 'bed-time reading'.

• Analysis of interactions in the yeast genome Tong et al (2004) Science, Vol 303, Issue 5659, 
808-813 , 6 February 2004

Next week, we are going to move out of the cell and into signalling to organize populations of cells.

 



Homework:

Q3 – here (left panel below) is a cytoplasmic signalling network (I'll tell you what it is from later – I
am being mysterious now so you have to think about it and not just look it up). What does it do? 
Why is this relevant to differentiation in response to an analogue (not 1/0, but continuously-
variable) triggering signal like the one on the right panel? 

1) Please come up with some exam questions (some short and based on recall, some for long essays 
based on exploration of a principle, not on simple recall) for the work we have been doing on genes,
gene networks and differentiation.

Please e-mail me your questions so I have tie to view them and make any small edits before the next
class. Thanks.


